- Home
- Standard 11
- Physics
13.Oscillations
hard
The displacement $y(t) = A\,\sin \,(\omega t + \phi )$ of a pendulum for $\phi = \frac {2\pi }{3}$ is correctly represented by
A

B

C

D

(AIEEE-2012)
Solution
Displacement $y(t)=A \sin (w t+\phi)$
$[Given]$
For $\phi=\frac{2 \pi}{3}$
at $t=0 ; y=A \sin \phi=A \sin \frac{2 \pi}{3}$
$=A \sin 120^{\circ}=0.87 A\left[\because \sin 120^{\circ}=0.866\right]$
Graph $(a)$ depicts $y=0.87 A$ at $t=0$
Standard 11
Physics
Similar Questions
hard
In the following table relation of graph in column$-I$ and shape of graph in column$-II$ is shown match them appropriately.
column$-I$ | column $-II$ |
$(a)$ ${T^2} \to l$ | $(i)$ Linear |
$(b)$ ${T^2} \to g$ | $(ii)$ Parabolic |
$(c)$ ${T} \to l$ | $(iii)$ Hyperbolic |
medium